APPENDIX 3

ENERGY SUPPLY ANALYSIS SUMMARY

The following table summarizes the results of the energy supply analysis conducted as part of the development of the CAP (Phase 1).

Analysis drew upon the comprehensive Alternate Energy Feasibility Study done as part of the 2010 CAP, and included an updated review, considering current economic conditions and technology developments.

Each energy supply option was screened against the CAP evaluation criteria, with an initial focus on meeting the financial criterion (potential for positive return) and the potential to reduce GHGs for 2020.

Two options emerged from this analysis as recommended for further investigation:

- 1. Expand BRDF biomass capacity from 6 MW thermal to 18 MW thermal.
- 2. Purchase Renewable Natural Gas.

As a third option, based on discussions with potential technology and funding partners, there may be additional energy supply options that integrate new research elements or technology opportunities with biomass and/or RNG supply systems. These opportunities will continue to be explored in parallel with the main two options above. Additional analysis will include:

- 1. Additional energy supply and financial risk analysis
 - a. Future biomass & RNG supply & demand, and future pricing risks
 - b. Balancing risks of current & alternative fuel supplies
 - c. Risk mitigation strategies
- 2. A more detailed costing and feasibility study of the potential biomass expansion (option 1).
- 3. Continue to incorporate information on carbon pricing into options analysis as it becomes available.
- 4. Continue to explore and evaluate other energy supply research and partnership opportunities (option 3).
- 5. Based on the outcomes from the above actions, recommend energy supply alternatives for implementation, by early 2017.

	Supply	y Side Goals	= 10,000 tonnes/y	r or 200,000 GJ/yr s	avings												
	CAP2	020 Action	Matrix - Energy S	upply					Assessm	ent 1=le	ast/worst; 5=m	ost/best					
Sub sector	ID	Idea Source	Option	Additional descriptive comments	Additional resources required: i.e. new staff, external consultant, OPEX or CAPEX	Further Research / Study Needed	Assessment Comments	Prioritization P=priority F=future R=research N=not recommended	*Impact 2020	Impact 2050	*Political & governance acceptability	*Ease of Implementation: within UBC control, lack of barriers	Acceptable risks	Other opportunities	Financial performance		Potential GHG reduction (tonnes/ year)
ES	ES-1	Wkshp	Increase BRDF renewable energy supply by 12 MW thermal		funding Approx \$12M capital	Initial feasibility and costing complete. Detailed design, costing, fuel study, and emissions study needed.	Likely positive NPV after 25 years, some concerns around supply availablility and supply diversidication. Note risk of achieving	R	4.5	3.5	2.8	4.3	3.3	3.5	3.3	25.2	12,000
ES	ES-2	Wkshp	Renewable N.G. from Fortis BC		No capital needed if RNG purchased	Requires further study Also investigate potential for biogas from UBC dairy (off	implementation by 2020. No capital, low risk, uncertain NPV. NPV may get close to zero if carbon tax increases.	R	5.0	5.0	3.3	4.0	3.7	2.5	1.7	25.1	Scalable depending on availability
ES	ES-3	Wkshp	Renewable N.G. direct sourcing		No capital needed if RNG purchased	campus) Requires further study. Need to negociate long tern contract with Vancouver Landfill or other equivalent source.	No capital, low risk, uncertain NPV. NPV may get close to zero if carbon tax increases.	R	5.0	5.0	3.0	2.8	3.0	3.0	2.3	24.1	Scalable depending on availability
ES	ES-6	Wkshp	Solar Thermal	Could implement a centralized system and/ or distributed systems. Note also potential for integrated therml/ PV systems. Consider a future requirement to make all buildings solar ready as part of green building plan.		Yes: launch a SEEDS study, perhaps with SBS, to do a cost/feasibility study.	Does not deliever heat when most needed i.e. winter time and early morning, New SUB building (Nest) has Solar Thermal, review performance after some operational experience.	F	1.5	2.5	2.8	3.8	4.0	3.0	2.3	19.8	<2,000

ES	ES- 10	Wkshp	Geothermal	been completed for both Deep geothermal and geoexchange. ear	Deep Geothermal has high risks including the possibility of inducing an earthqauke from fracking. Geoexchange does not fair well at UBC due to low K Value (.5 watts/	gh risks ing the illity of ng an pauke racking. Ichange not fair well C due to low	2.3	3.0	3.3	2.8	2.3	3.5	1.0	18.1	Potentially scalable.	
	FC F	NA/L	C L DV			m^2) Prioritize Waste heat over geothermal.	F	0.0	10	20	40	27	25	17	17.2	12000
ES	ES-5	Wkshp	Solar PV (electricity)	Consider a future requirement to make all buildings solar ready as part of green building plan.		Cost of PV installation -\$4/ Watt still to high for reasonable paybacks. Current scope 2 GHG emission only -2,000 tonnes/ yr minor impact on 2020 GHG emissions	F	0.8	1.0	2.8	4.0	3.7	3.5	1.7	17.3	<2000
ES	ES-9	Wkshp	Waste to Energy	Could be combustion or gasification of solid waste, or biogas production from organics.		Potential issues/ concerns with air emissions. Typically need -100,000 tonne/ yr facility to be economically viable; UBC produces 1,000 tonnes - 5,000 tonnes depending on waste types included.	N	2.8	4.0	0.8	1.3	2.0	3.5	3.0	17.3	Potentially up to 10,000 if large amounts of waste were brought on campus.

ES	ES-4	Wkshp	TRIUMF waste	This would	4000-8000	N	2.5	2.5	2.3	2.0	3.3	3.0	1.3	16.9	4000 -
			heat recovery	include moving	tonnes/yr										8000
			with energy	implementation	depending on										
			purchase from	earlier, to 2019	schedule and										
			Corix	instead of	Neighbourhood										
				the currently	District Energy										
				anticipated 2024.	System future										
				.	growth. Negative										
					NPV (would										
					be positive if										
					implemented at										
					planned timeframe										
					of 2024), low										
					risk, high cost,										
					not in direct UBC										
					control, requires										
					a lot of electrical										
					power. Waste										
					heat availability										
					expected to										
					diminish as										
					south campus										
					neighbourhood is										
					built out.										
ES	ES-7	Wkshp	Waste heat		Current Sewer	N	1.3	1.5	2.5	3.3	3.0	3.0	2.0	16.5	<2000
	23 /	TTROND	recovery (Sewer		water flows ~100	.,	1.5	1.5	2.5	3.3	3.0	3.0	2.0	10.5	-2000
			heat)		liters per second										
			neat)		(70 from north										
					campus 30 from										
					south campus)										
					= ~1-2 MW heat										
					recovery or ~2000										
					tonnes reduction										
					max Issues										
					with fouling and										
					operational costs										
					a concern TRIUMF										
					heat recovery is										
					preferable due to										
					1.										
					capacity and water										
FC	FC 10	14/1	TI IC		quality.	N.I.	1.0	20	2.5	2.0	2.7	2.0	17	15.0	D .
ES	F2-13	Wkshp	Thermal Storage		Not currently	N	1.0	2.0	2.5	3.0	2.7	3.0	1.7	15.8	Requires
					required 10 year										research
					out at least.										
					Expensive.										

ES	ES- 18	Public callout	Implement an Energy Internet including distributed generation such as solar.			Minimal impacts on GHGs. May be more relevant as part of peak electrical demand management. Key enabler is the feed in tariff, in a broader context outside UBC. WE don't have the business case yet, no subsidies. For UBC, this option would probably entail	N	1.0	1.0	2.5	2.0	1.5	3.5	1.5	13.0	<2000
ES	ES- 12	Wkshp	Sewage Sludge/ bio solids / Gasification at UBC		More research required.	distributed solar generation. Potential at UBC is assumed to be less then 1000 tonnes/ yr based on UBC resources.	N	1.5	2.3	1.5	1.8	1.3	3.0	1.7	13.0	<1000 but could be much larger if large amounts of biosolids were available from off-
ES	ES- 14	Researcher Callout	Explore carbon capture and utilization or other research opportunities for future implementation.	This action could include carbon capture; carbon utilization for algae/fish production with demonstration "exhibition hall" (researcher callout idea); or other technologies, in collaboration with researchers and potentially as Campus as a Living Lab project.	Yes, this would initially be a research project or series of projects. Note that there may have been an LCC analysis done.	Longer term option requiring significant R&D.	F	0.7	2.0	2.3	1.7	2.0	2.5	1.0	12.2	Requires research

	1						1		1	I	1				
ES	ES-	Researcher			Challenging in	N	0.8	2.3	1.3	2.0	2.0	2.5	1.0	11.8	Requires
	16	Callout	geothermal		terms of our level										research
			electricity		of influence and										
			generation		control.										
			project		An off campus,										
			off-campus		offsets-based										
			to displace		project. Would be										
			natural gas		subject to Pacific										
			fired electricity		Carbon Trust										
			generation		criteria for offsets.										
			(possibly for												
			export) and												
			create offsets												
			that UBC could												
			potentially												
			utilize to reduce												
			its emissions.												
ES	ES-8	Wkshp	Wind power	Poor location		N	1.0	1.0	1.5	1.8	2.0	2.5	1.3	11.1	<2000
				for wind power											
				average wind											
				speed only 4											
				meters/second											
				also next to YVR											
				flight path											
ES	ES-11	Wkshp	Wav / Tidal	UBC is not an		N	1.0	1.0	2.0	1.3	1.7	3.0	1.0	10.9	<2000
			energy	ideal location											
				for wave or tidal											
				power											