<table>
<thead>
<tr>
<th>PRIOR TO ITEMS</th>
<th>RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 AUDP – Dec. 3, 2015</td>
<td></td>
</tr>
<tr>
<td>1.1 The entry to the layover area could potentially contribute to a better definition of the street if the scale is more consistent with the new Aquatic Centre and canopies in the passenger areas.</td>
<td>Unfortunately the scale of the opening cannot be changed. The height of the entry opening was define by the fire department at 5m clear. Width defined by TransLink to allow for bus and emergency or service vehicle to pass by.</td>
</tr>
<tr>
<td>1.2 Favorable comments were made around the excitement of social mix and vibrancy the project has the capability of introducing into the campus.</td>
<td>We agree, no comment.</td>
</tr>
<tr>
<td>1.3 There is potential for the drivers' facility to be a bolder statement by extending the roof.</td>
<td>Glazing line jogged to provide a more prominent entry to the Drivers’ Facility and accentuate the roof. Limitations on roof cantilever and roof structure depth were considered.</td>
</tr>
<tr>
<td>1.4 The transit median plantings should form lush green barriers that are well-maintained.</td>
<td>Please see detail 5/L701. The planting median is bermed to prevent crossings and densely planted with lonicera pileata. This plant was discussed with the campus landscape architect and we agreed that it satisfied the requirements of low maintenance, durable, and dense enough to prevent crossings. Additionally, trees are placed along the Exchange median.</td>
</tr>
<tr>
<td>GAGE SOUTH STUDENT RESIDENCE</td>
<td></td>
</tr>
<tr>
<td>1.5 The architectural language needs further exploration. There is a general flatness or two-dimensional quality.</td>
<td>We have looked in to different options, but a have been directed back to a flatter façade to reduce construction costs.</td>
</tr>
<tr>
<td>1.6 The town homes that front Wesbrook Mall at-grade need some separation or refinement to help announce or protect the entries for a feeling of safety and security.</td>
<td>Each townhouse is separated with a 900mm wide concrete pillar, part of an overall framing system, which defines the podium. In addition the larger pillar, there is accent small canopy support by a vertical grounding element.</td>
</tr>
<tr>
<td>1.7 The two exterior stairs meet the ground to pavement. Consider adding some plant material to</td>
<td>We have considered planting at these areas, but due to the failure</td>
</tr>
<tr>
<td>1.8</td>
<td>The podium is well resolved. The landscaping and potential vibrancy, bearing in mind access control and security, are positive attributes.</td>
</tr>
</tbody>
</table>

| 2.0 | **DRC Action Items – Nov. 26th Meeting**
DRC supports the proposal subject to: |
2.1	Follow up with UBC Utilities regarding:	
2.1.1	Relocation of Sanitary sewer	UBC Utilities have Approved Current drawings
2.1.2	Oil receptors in catch basins	UBC Utilities have Approved Current drawings
2.1.3	Revised water main drawings	UBC Utilities have Approved Current drawings
2.2	Provide University Landscape Architect with cross-sections for curbs to building face-narrowest to widest.	PFS will provide the sections.
2.3	Ensure plantings in transit median are tall to prevent crossings	Please see detail 5/L701. The planting median is bermed to prevent crossings and densely planted with lonicera pileata. This plant was discussed with the campus landscape architect and we agreed that it satisfied the requirements of low maintenance, durable, and dense enough to prevent crossings. Additionally, trees are placed along the Exchange median.
2.4	Consider changing meadow plantings on podium to a lower maintenance scheme. Applicant to have off line discussion with Jeff Nulty, Landscape Designer, Plant Operation and Penny Martyn, Manager, Green Buildings.	The Landscape design has been developed(changed) and has replaced the meadow planting with AstroTurf (or similar product), with the only remaining planting concentrated along the edge to provide a buffer from the diesel bus activity below and screening and setback from residential towers.
2.5	Consult with Custodial Services on how much space would be required for their blue bins. Applicant to contact Michael Thayer, Architect, Building Operations once the design details are further along for the plans for the maintenance.	Waste/Recycle reseptacles chosen from the UBC Technical Guidelines document. Bins will be 3-compartment from Ni Corporation (Cite Outdoor Recycling Centre)
2.6	Implement a bird friendly strategy for windows	The 2 storey townhouses at grade have a limited amount of glazing, which will limited the issue. The podium side on level 3, will have taller trees in front of the windows, to help deter collisions.
2.7	Design podium level to carry a man lift	Depending on the size of the man lift, it might be able to fit in our freight elevator. Or possibly drive up our exterior stairs.
2.8	Parapets are to be 3 ft.-6 inches high.	We have looked into higher parapets, but due to the installation of a mechanical screen, the parapets seemed a bit redundant. The shorter parapets will also reduce construction costs.
2.9	Follow up with Transportation Engineer regarding curbs profile design on Wesbrook Mall.	Need clarification on this. Wesbrook Mall ultimate design is currently under review by UBC/UEL.
2.10	Provide CBO with strategy for the fire alarm system (for the mixed uses in project).	The fire alarm system will be one system, 2 zones. 1. We will have one primary annunciator panel located a building B, two secondary remote panels will be located in building C, D. 2. The bus operator’s facility will have no remote panel, but TransLink/CMBC Operations will be notified when there is an alarm to the main panel. 3. The townhouse flow switches which are tied back to the fire alarm system will be grouped in three zones, building A, B&C, and D. 4. Individual townhouses, pull stations will be replaced by strobe lights linked to the smoke detectors. Smoke detectors are not linked to the main fire alarm system.
2.11	The project does not have a design brief with sustainability oriented project goals (step 1 for the UBC Sustainability Process) Consequently we recommend the following basic project design goals in addition to the LEED gold mandate. o Energy use intensity target: 115kWh/m²/yr. whole building (90kWh/m²/yr. base building, 25kWh/m²/yr. plug loads) o Zero waste ready: space allocated for future recycling stations on each residential level near elevators(0.75m²)	This project is not projected to achieve that energy use level. Our Design Development modeling showed an EUI of 141 total, (110 regulated, 31 plug loads). We were questioned on this by Orion and provided an analysis which seemed to satisfy him. Of course this will change slightly (+/-) with a detailed final model of the building with actual lighting, envelope, and mechanical system information. We have allocated space for future recycling at the knuckle of building A&B, unfortunately this area is not
Risk Management Services:

With respect to use of combined CB and oil water separators, the following issues must be addressed to the satisfaction of RMS staff:
- Effectiveness of these units relative to oil water separators
- Advantage and disadvantage compare to oil water separators (places where they are currently being used)
- Maintenance requirements
- How many units are expected to be installed as part of this project
- Ensure they are sized for expected run off and spill containment
- Those that are responsible to maintain these units are to be engaged and be part of the unit selection process.

CB Oil interceptor is a Translink specific requirement and is their detail provided to us. During design we asked to remove the requirement for this type of CB due to the stormceptor installation nearby, however the request was rejected.

Maintained by UBC

TransLink requirements for spec in CB oil interceptors for CB’s in Layover & Exchange (TransLink leased area).

Public Open House Feedback Forms:

Ten (10) response/feedback forms were received

3.1 Feedback: Student/Resident

- Glad to see that security issues are being addressed with FOBing the elevators and controlling/restricting access using gates.
- Micro units look good - nice to see the feedback being incorporated.
- Students will want to use the bus loop to cut/walk through. Perhaps a conversation with TransLink to help facilitate sidewalks to make it safer for all (students will cut-through regardless, might as well make it less likely that they get hit by a bus).

3.2 Feedback: Student/Resident

- Make sure fridge door not blocked, so can ... (remainder not legible) & take inside shelving out.
- Bus loop: Bike lane from loop to Campus? Bike storage?

We will adjust the spacing to allow for the fridge door to open, so the shelving can be removed.

We have 495 bike parking spaces in suite, and 129 bike parking spaces in bike rooms.

Online Feedback Forms:

As of December 9, 2015, eight (8) online comment forms were completed.

3.4 Feedback: Staff

The weather-protected passenger areas need to align with bus bays so that passengers queuing for buses are protected from the elements. From the renderings, it would appear that this has not been taken into account, as shelters are set back from bus bays and (curb-side) queueing passengers will not be protected. Roof shelters

Extensive, continuous canopies are provided along the entire length of the Alighting (arrivals) and Departure Platforms.

Due to minimum emergency and
need to be extended outward.

This is not the case at the recently-opened trolley bus loop (or at the existing diesel loop). At both loops, passengers are penalized for queuing during inclement weather (i.e. passengers who line up for buses get rained on, while those who do not queue up in an orderly manner have the option of waiting under a shelter).

Shelter locations need to logically follow bus bay alignments so that orderly queuing at each bus bay is encouraged at all times. It’s annoying to queue for my bus in bad weather, only to have those waiting at shelters try to barge into the queue when the bus arrives. Curb-side placement of shelters would correct this situation.

| transit vehicle headroom clearances, canopies within 600mm of curb would be required to be 5m clear to u/s of any element (structure, lights, signage). By placing canopies back 600mm from the curb, we have been able to lower the canopies overall, providing a more pedestrian scale height and providing more cover to overall to queuing passengers and pedestrians. Also, queuing strategies from TransLink indicate that not all queuing will be parallel to the curb. Some queuing lines will be perpendicular to the curb nearly all passengers under the canopies while waiting. |
CONTEXT PLAN - PROPOSED FACILITY

1. REFER TO EXISTING SURVEY PLAN FOR LOCATION OF ALL SERVICES, STRUCTURES, FACILITIES AND SURFACES.
2. REFER TO PRECINCT CIVIL AS BUILT FOR LOCATION OF SERVICES.
3. REFER TO PROJECT CIVIL AS BUILT FOR LOCATION OF SERVICES.
4. REFER TO PRECINCT SURVEY REPORT OF FACILITIES TO BE DEMOLISHED FOR MATERIAL REUSE AND RECYCLING ASSESSMENTS PRIOR TO COMMENCING WORK.
5. PRODUCE LAYOUFF AND STOCKPILING PLAN PRIOR TO COMMENCING WORK.
6. REFER TO PROJECT CIVIL DRAWINGS FOR EXTENT OF CIVIL WORK.
7. REFER TO PROJECT ELECTRICAL DRAWINGS FOR EXTENT OF ELECTRICAL WORK.
8. REFER TO PROJECT LANDSCAPE DOCUMENTS FOR EXTENT OF LANDSCAPE WORK.
9. REFER TO GEO-TECHNICAL REPORT FOR SOILS INFORMATION.
10. REFER TO PROJECT CIVIL RECOMMENDATIONS AND CONSTRUCTION BOUNDARIES WITH ADJACENT CONSTRUCTION PROJECTS, PROPERTIES AND STAKEHOLDERS.
11. REFER TO PROJECT CIVIL LAYOUT AND SCOPE BOUNDARY (APPROX.)
12. CONFIRM ALL EXISTING STRUCTURE, SERVICES AND PROPERTY LINES (FOR SET OUT) BY SITE SURVEY PRIOR TO COMMENCING WORK.

SITE LEGEND:

- FIRE HYDRANT
- PROPERTY LINE

FOR INFORMATION ONLY
NOT FOR CONSTRUCTION

REFERENCES:

- PROJECT CIVIL AS BUILT
- PROJECT MECHANICAL AS BUILT
- PROJECT ELECTRICAL AS BUILT
- PROJECT LANDSCAPE AS BUILT
- PROJECT MECHANICAL DRAWINGS
- PROJECT ELECTRICAL DRAWINGS
- PROJECT LANDSCAPE DRAWINGS
- PROJECT CIVIL DRAWINGS
- PROJECT SURVEY REPORT
- PROJECT GROUNDWATER REPORT
- PROJECT GEO-TECHNICAL REPORT

SCALE: 1:2000

DATE: 9/23/2016

DRAWN: CHECKED:

C:\Revit\Local Files\DLG_04236V_AR_UBC_Jtompson.rvt

PLOT DATE:
GENERAL PLAN NOTES:

1. DIMENSIONS ARE TO CENTRE LINE OF COLUMNS, OUTSIDE FACE OF CONCRETE & CMU BLOCKS OF STRUCTURE U.N.O.
2. DIMENSIONS ARE TO FACE OF METAL STUD FOR PARTITIONS U.N.O.
3. SEE A180 FOR FINISHED AND INTERIOR MATERIALS

FOR INFORMATION ONLY
NOT FOR CONSTRUCTION

METRIC

ISSUED FOR
DRAWN: CHECKED:

SCALE:
1 : 50

DRIVERS FACILITY ISOMETRIC REFERENCE

FOR INFORMATION ONLY
NOT FOR CONSTRUCTION

UBC EXCHANGE GAGE
SOUTH RESIDENCE

DRIVERS FACILITY
FLOOR PLAN

UBCPT
SHHS

DIALOG

9/23/2016 2:09:50 PM
C:\Revit\Local Files\DLG_04236V_AR_UBC_Jtompson.rvt

AUTHOR
CHECKER

A125
DRIVERS FACILITY

SCALE:
32 016-07-18 ISSUE FOR 99% COORDINATION
42 016-08-31 ISSUE FOR 100% COORDINATION
52 016-09-23 REISSUE FOR DP
FOOTINGS EXTEND 1200MM
LEGEND:
1. SIAMESE CONNECTION
2. WINDOW WALL - METAL SPANDREL PANEL
3. WINDOW WALL - VISION GLASS
4. WINDOW WALL - GLASS SPANDREL PANEL
5. GLASS/GLASS ALUMINUM CURTAIN WALL
6. BRICK - COLOUR #1
7. BRICK - COLOUR #2
8. CONCRETE EYEBROW
9. PAINTED CONCRETE
10. MASONRY CLADDING
11. METAL PANEL
12. METAL LOUVERS
13. GLASS GUARDRAIL
14. CANOPY
15. OPERABLE WINDOW
16. SHUTTER
17. WOOD BEAMS
18. METAL FRAME DOOR
19. GLASS SECURITY GATE
20. WIRELESS ANTENNA

NOTES:
This document is for internal use only and must not be used, reproduced, or revised without the written permission of the consultant. The consultant reserves the right to correct any errors or omissions in this document. The use of this document is subject to the terms and conditions specified herein.

UBC EXCHANGE
GAGE SOUTH RESIDENCE
1960 Student Union Boulevard, Vancouver, BC, V6T 1Z1

Elevations
A405

NORTH ELEVATION - BUILDING A&B
LEGEND:
1. SIAMESE CONNECTION
2. WINDOW WALL - METAL SPANDREL PANEL
3. WINDOW WALL - VISION GLASS
4. WINDOW WALL - GLASS SPANDREL PANEL
5. GLASS/ALUMINUM CURTAIN WALL
6. BRICK - COLOUR #1
7. BRICK - COLOUR #2
8. CONCRETE EYEBROW
9. PAINTED CONCRETE
10. MASONRY CLADDING
11. METAL PANEL
12. METAL LOUVERS
13. GLASS GUARDRAIL
14. CANOPY
15. OPERABLE WINDOW
16. SIGNAGE
17. WOOD SIDING
18. METAL OVERHEAD DOOR
19. GLASS SECURITY GATE
20. WIRELESS ANTENNA

DE
DD/DC
DB/DA

BUILDING C BEYOND

CC
CB
CA

BUS EXCHANGE BELOW

SOUTH ELEVATION - BUILDING D

SOUTH ELEVATION - BUILDING C